Combat Warm Air Heaters – Industrial & Commercial Heating Solutions

Warm air heater
Warm air heaters 2
warm air heater

Combat Warm Air Heaters

Warm air heating is designed to replace traditional gas water-heating systems within commercial & industrial premises and works by forcing warm air around the building. These heaters are used in commercial properties and public spaces such as retail outlets and sports halls and are known to improve energy efficiency when compared to other systems.

Warm air heaters work by pulling cold air from the building and pushing it across a heat exchanger. The cold air is heated across the heater exchanger via a fan and re-distributed back into the environment until the required temperature is achieved. The heaters can operate on a variety of fuels from natural gas, LPG, oil, and biofuels. By combining a warm air heater with a sophisticated control system, businesses can easily manage the temperature without overheating or getting too cold.

Warm air heating systems come in a range of options such as roof suspended and floor standing units, making them an extremely versatile choice for industrial and commercial premises. The Combat Compact range is ideal for smaller buildings that may require less heating, particularly when space is at a minimum. Alternatively, for improved energy efficiency, you may want to consider the Combat ECO Condensing Unit Heaters, which are the smallest condensing heaters on the market at present.

The Combat extensive knowledge of the commercial and industrial heating sector helps find solutions to suit most requirements.

Combat ELG and ELO Cabinet Warm Air Unit Heaters
Combat ELUA Suspended Warm Air Unit Heaters
Combat Elite Suspended Warm Air Unit Heaters
Combat ECO Condensing Warm Air Unit Heater

Combat Radiant Heating

Combat Radiant Heating

Radiant heating is a cost-effective, reliable method of heating indoor areas that require a more even spread of heat, they are designed to provide localised heat. The best way to describe how infrared radiant heaters work is to compare one to the most reliable known heater – the Sun. The heat energy from the Sun radiates heat through space and our atmosphere, striking the Earth’s surface and heating it. It is this warmed surface that then heats the air and raises the air temperature. This one of the main reasons, radiant heating is a popular choice when considering garden centre or greenhouse heating. Due to the versatility of radiant heaters, they are also utilised for factory and warehouse heating.

Radiant heating, unlike warm air heating, doesn’t heat the air. It first heats the people and the objects around it, including the floor, which in turn acts as secondary heating, raising the air temperature. The main benefit of radiant heating is the reduced loss of heated air in areas with open doors and windows. Unlike warm air heaters which must use excessive energy to heat the building’s atmosphere once a door has been opened, objects heated by radiant heating will continue to stay warm. For industrial and commercial buildings such as distribution centres or warehouses that often have large doors open to cater for deliveries, radiant heating is the most cost-effective solution for maintaining suitable working temperatures.

Combat area one of the leading providers of infrared heaters, with extensive experience of implementing systems across a wide range of industries and environments. Models Available:

Combat CoRayVac
Complete Linear and U-Tubes
Combat NRG Controller

For gas fired heater requirements for new sales contact Chillaire Limited for a free survey and no obligation quotations. Contact our heating call centres at Coventry, West Midlands, Leicester, Leicestershire or Northampton, Northamptonshire.

Northampton Industrial Heating Centre: Chillaire Limited, Moulton Park Business Centre, Redhouse Road, Moulton Park, Northamptonshire, NN3 6AQ – Tel: 01604 269540 or email sales@chillaire.co.uk and you can visit our website for further details: www.chillaire.co.uk

Industrial & Commercial Heating Centre Serving: Rugby: 01788 669164 / Kettering: 01536 384046 / Daventry: 01295 207682 / Wellingborough: 01604 269540 / Rushden: 01604 269540

Coventry Industrial Heating Centre: Chillaire Limited, 16 Lythalls Lane, Coventry, West Midlands, CV6 6FG / Tel: 024 7624 9440 or email sales@chillaire.co.uk and you can visit our website for further details: www.chillaire.co.uk

Local Chillaire Industrial / Commercial Heating Centres: Rugby: 01788 669164 / Leamington Spa & Warwick: 01926 825681 / Stratford upon Avon: 01789 273289 / Banbury: 01295 207682 / Redditch: 01527 531275 and Leicester: 0116 202 5094

Powrmatic LNVx

Powrmatic LNVx has now been launched! This is a suspended warm air heater which combines form, function and ErP compliance to create Powrmatic’s most advanced unit heater to date. Building on the popular features of the successful NVx range, the LNVx meets new NOx criteria as well as the minimum seasonal efficiencies that are now required, whilst also incorporating a number of new features designed to make the installation more easy for companies such as us Chillaire Ltd.

The new Powrmatic LNVx gas fired heater models are available in high-fire outputs from 14.5kW to 137kW (low fire from 8.6-93.3kW), the optimised design of the units makes it easy for specifiers and installers to match outputs and airflow characteristics to a wide variety of applications.

Multi in-shot burners are matched to each robust tube assembly all manifolds linked to a common gas valve and ignition system and complete with flame monitoring and safety controls. Natural gas burners are supplied as standard, with LPG as an option.

More Powrmatic Gas Heater Features

Another new feature provided is the ‘plug & play’ control panel, which enables any installer quick and trouble-free wiring connections on site. The new designed internal hinged, swing out control panel also allows quick and simple access to the burner compartment during installation and servicing.

Models available include axial fan crossflow, down flow and bi-directional units, as well as centrifugal close-coupled fan units and ducted no-fan units. Low noise levels are assured by the use of anti-vibration mounts as standard on the axial fans.

The Powrmatic LNVx shell has been re-designed with more folds to increase strength throughout. LNVx models also feature a more compact design than their predecessors, allowing for installation in smaller spaces if required.

For gas fired heater requirements contact Chillaire Limited for a free survey and no obligation quotations. Contact our heating call centres at Coventry, West Midlands, Leicester, Leicestershire or Northampton, Northamptonshire.

Coventry Industrial Heating Centre: Chillaire Limited, 16 Lythalls Lane, Coventry, West Midlands, CV6 6FG / Tel: 024 7624 9440 or email sales@chillaire.co.uk and you can visit our website for further details: www.chillaire.co.uk

Sanyo Air Conditioning Spares

Chillaire Limited continue to supply Sanyo spares and providing replacement parts / systems for Sanyo air conditioning systems with replacement Panasonic spares / systems.

Sanyo which had been going since 1958 was merged and bought out by Panasonic air conditioning systems. The product ranges of Sanyo and Panasonic were merged under the Panasonic logo and the Sanyo name ceased to be an active brand, at least in air conditioning.

Over time virtually all of the Sanyo RAC products and all of the Sanyo residential air to water range were replaced by Panasonics RAC and Aquarea ranges.

Sanyo air conditioning commercial products had already been launched into Panasonic range,starting with ECOi electric VRF which replaced the previous Urban Multi UM4 range in its entirety and running alongside Panasonics own FS-Multi simplified VRF range . A new Panasonic branded Elite PACi and GHP range followed, with Elite PACi being run in parallel with Panasonics own FS range.

Panasonic FS and FS-Multi ranges have been discontinued in the UK and the entire Panasonic commercial air conditioning and heating ranges are now based upon what was Sanyo’s PACi, ECOi and ECOG products.

Supporting the old Sanyo versions of these products is easy because the electronics are virtually identical.

Chillaire Limited have been supporting existing customers with Sanyo air conditioning systems already installed over the past 10 to 15 years. Chillaire Limited have, and continue to source and supply spares, technical support and replacement Panasonic equipment.

Chillaire Limited have when required attended customer sites with Panasonic (Sanyo) to assist with modification and repair of old Sanyo systems.

Chillaire with the support of Panasonic have access to Sanyo technical information. We recognise existing Sanyo model references. We can anyone who has Sanyo wall / cassette / ducted split systems, Sanyo multi split systems, Sanyo VRF systems or Sanyo chiller units

If you have Sanyo equipment on site and require any assistance, breakdowns, repairs or replacement please call Chillaire Limited on Coventry area 024 76320300, Northampton area 01604 269540, Leicester area 0116 2025094, Kettering & Peterborough area 01536 384046, Banbury area 01295 207682, Redditch area 01527 531275, Derby area 01332 561729 and Milton Keynes & Bedford area on 01908 483585. You can email us at sales@chillaire.co.uk or service@chillaire.co.uk for more information on air conditioning, heat pumps, gas fired heating, chiller units, VRV / VRF systems, ventilation, heat recovery, humidification and dehumidification systems visit our website www.chillaire.co.uk

Sanyo Air Conditioning Systems Spares & Technical Support

Panasonic & Sanyo Air Conditioning System Brands

Sanyo air conditioning were taken over by Panasonic air conditioning a few years ago, and have slowly phased out the Sanyo brand and are no longer supplying the Sanyo air conditioning branded range as Sanyo, but instead as Panasonic.

Any new spare parts for existing Sanyo systems come with the Panasonic logo / branding. Existing customer sites with existing Sanyo systems, where we have had to replace the whole indoor or outdoor unit due to faults, as they are sometimes compatible, can lead to having both Sanyo & Panasonic brand names on the same air conditioning split system, which can sometimes cause confusion. We usually install a label on the indoor or outdoor unit to clarify what has happened.

The good news for all customer with existing Sanyo equipment is that getting hold of Sanyo spare parts has not been an issue for Chillaire Limited. We can obtain spares through Panasonic or due to our knowledge of the air conditioning industry through our network of ex Sanyo suppliers. Chillaire Limited has a good relationship with the Panasonic technical department, who have ex-Sanyo staff with good Sanyo equipment knowledge to assist our engineers, even though our engineers have good knowledge on the Sanyo brand.

Chillaire Limited will continue to offer technical support and repair of Sanyo systems, for the foreseeable future. Our engineers have years of experience working on Sanyo split air conditioning and VRF systems. We will also continue to offer support for the Sanyo rooftop units, packaged units, chillers, close control air conditioning systems and their gas fired air conditioning systems.

Panasonic can offer a like for like replacement air conditioning systems for existing Sanyo air conditioning systems that may require upgrading or replacing, which they are able to do with relative ease and quickly. You also have the option to consider alternative brands, which Chillaire Limited can offer, such as  Hitachi / Daikin / Fujitsu / Mitsubishi / Samsung / LG matching existing Sanyo air conditioning system capacities, types of equipment and design.

If you have a Sanyo system that you are having problems with and you require assistance, feel free to contact us on 024 7632 0300024 7632 0300 or by email: service@chillaire.co.uk.

National regional numbers are available on our website: www.chillaire.co.uk

You can also call us on our National Freephone Number: 0800 092 98980800 092 9898 FREE

Carrier “AquaSnap” Heat Pumps & “Greenspeed” Intelligence

Carrier Air Conditioning has introduced the new generation of AquaSnap® air-to-water scroll heat pumps with Greenspeed® intelligence, offering new levels of efficiency and performance for building owners. Carrier a world leader in high-technology heating, ventilation, air-conditioning and refrigeration (HVACR) solutions is a part of UTC Building & Industrial Systems.

The new generation of 30RQP AquaSnap heat pumps combines both simplicity and intelligence. The product features the latest technologies including variable-speed driven fans, brazed plate heat exchangers with asymmetric channels, electronic expansion valves and a coloured touch screen user display.

This new range includes an innovative defrosting method, which may be used without consuming any additional energy. Therefore, it can significantly improve the seasonal coefficient of performance (SCOP) of the heat pump by up to 12 percent compared with earlier AquaSnap models. This defrosting method generates shorter payback, higher efficiency and reliability and improved comfort, reducing noise and vibration emission level as well as environmental impact.

The built-in hydraulic modules with optional variable-speed driven pumps can electronically control the variable water flow to meet real application needs during partial load operation and stand-by periods, thus significantly reducing the pumping energy consumption by two-thirds. The modules also feature electronic sensors for automatic pump protection against cavitation and for water flow electronic reading and setting.

The energy efficiency performance of the AquaSnap heat pumps with Greenspeed intelligence already meets the 2017 European Ecodesign regulation with a SCOP value in heating of up to 3.38. The new range also offers segment leading performance with European Seasonal Energy Efficiency Ratio (ESEER) values in cooling of up to 4.28.

In addition, the new AquaSnap range utilises proven technology that Carrier and service engineers are familiar with and trained on to carry out routine service & maintenance.

“Carrier provides a unique value proposition for customers, with unprecedented levels of performance and efficiency in its AquaSnap line of heat pumps.

Chillaire Group offer the Carrier range of chillers & heat pumps to existing customers and new customers. for further detail you can contact us at our head office on 024 7632 0300 or you can email us at sales@chillaire.co.uk

F-Gas Records – Not Keeping up to date F-Gas records could put users and owners of refrigeration and air conditioning at “risk of legal action”

If users or owners of refrigeration and air conditioning equipment do not keep documentation on site is up to required standards of new F-Gas legislation, could leave them to them open to the risk of legal action being taken by the ruling body of F-Gas compliance.

F-Gas compliance standards on many commercial refrigeration and air conditioning sites fall short of mandatory requirements.

Chillaire Limited believes that contractors need to investigate and review their current approaches to ensure that F-Gas requirements are met properly, and customers (Users or owners) are better informed about their responsibilities, we regularly send out reminder letters to all of our customers. A key element for both the contractor and the customer is the need to maintain detailed records on site for activities involving work on all refrigeration / air conditioning or any F-Gas-containing equipment.

The F-Gas Regulation lays down strict requirements for record keeping, designed to ensure a log is available on site for all operations affecting F-Gas plant.

This has to include a log sheet for every applicable F-Gas asset, and record all mandatory leak tests carried out, whether any leaks are identified and if any remedial work is required, with a record of all refrigerant moved in/out of the plant.

Importantly, there is a requirement to log all top-ups of F-Gas refrigerant made to equipment. Full records should be kept for at least five years. This is designed to ensure there is a continuous log of F-Gas-related work, giving inspecting authorities a complete history to ensure cradle-to-grave compliance. However from experience this not always the case.

The requirement applies to all systems containing more than 5 tonnes CO2-equivalent of F-Gas, and includes the common refrigerants R134a, R410A, R407C and R404A. Hermetically sealed equipment containing up to 10 tonnes CO2-equivalent is exempt, and there is a grace period for units containing less than 3 kg of any F-Gas to the end of 2016.

The obligation came into force on 16 April 2014, with the introduction of EC Regulation 517/2014, updating the previous 2007 Regulation.

Our engineers have attended new sites, where Chillaire Limited has recently taken over the service & maintenance contract and there is no F-Gas Register with the necessary information for each piece of relevant equipment. In these situations, end users are laying themselves open to legal action.

In some cases, there is some form of register or fragmented service record, but the information is incomplete or out-of-date and very difficult to review, meaning equipment owners are not compliant. It is a major issue.

This is usually a major problem on sites attended by different contractors over a period of time, with varying approaches and levels of compliance.

For example, a contractor responsible for a site may be replaced, perhaps a number of times over several years, and data lost or subsequently recorded in a different format or physical place.

An FM provider may be using various different contractors on the same site, who each have their own way of recording the F-Gas information, in some instances the contractor may not even bother, as they may only be going to that site the once on behalf of the FM provider.

The governing body assumes continuity, handovers of record keeping between companies and a minimum continuous record of five years, but in reality it may be different.

In this situation, the client whose responsibility it is to meet many of the F-Gas requirements is left exposed, if an inspection reveals incomplete or non-existent records. Many equipment owners assume that because they have a maintenance contract in place with an F-Gas registered service company, they are fully covered in terms of F-Gas compliance.

The regulation clearly lays down specific responsibilities on equipment owners, for record keeping as well as physical leak checks, and they are legally responsible for meeting them.

Responsibility is only passed to the service company if this is agreed as part of the contract. Unless this transfer of responsibilities is explicitly agreed, the default position is the equipment owner is responsible in law.”

Enforcement agencies are known to be stepping up action around non-compliance, with some cases going to court.

Chillaire Limited keep customer F-Gas equipment asset registers and logs all service maintenance visits and keep copies of all F-Gas visit check sheets for each visit and each end user / customer on file. We can provide copies to end users or customer upon request.

Chillaire HVAC & Refrigerant Retrofit or New Modern HVAC System Option?

HVAC systems (Refrigeration / Air Conditioning / Heat Pump) replacement is a costly and messy process that can disrupt building operations over an extended period of time. This means it’s crucial to ensure the retrofit produces the maximum benefit. Not only will this enhance the operation of the facility, it will also help to ensure that the retrofit process will not have to be repeated in the near future.

Customers / Users embarking on an HVAC retrofit should keep the following in mind.

Like for Like Plant Swap?

The easiest and quickest way to replace an older HVAC system is to put in a new system that matches the old one. For example, when the building chiller unit or rooftop package air conditioning system reaches the end of its service life, it is common practice to install a new chiller unit or rooftop package unit of the same type and capacity. Conditions today are probably different, perhaps vastly different, than they were when the original chiller was installed. These days there are alternative options such as VRV or VRF heat recovery heat pump multi systems as well.

While that approach is simple and quick, it is often not the best choice. Most HVAC systems and their components have normal service lives of 15 to 25 years if properly maintained. When a system is originally installed, it is sized and designed to meet the needs of the building at that time. Buildings change, and so do the operations that take place within the buildings. There might be more people in the building and more electronic equipment – computers, printers, copiers and the like. Simply replacing ‘like for like’ does not take these changes into consideration. To get the most out of HVAC system retrofits, the new system with new options must be designed to match the current and future needs of the facility.

New Modern Technologies

HVAC technology has achieved tremendous progress in the past 15 years. New DDC control systems provide a better climate while reducing energy costs. High-efficiency or alternative-fuel chillers can reduce the cost of air conditioning. Variable frequency drives can improve the operating efficiency of both chillers and fan systems. Interoperable building automation systems give facility executives the tools they need to better manage operations.

Although these HVAC technologies are relatively new, they are not risky. They have proven themselves in a range of applications. They are widely used today in new construction. Many are considered essential to keep facilities competitive.

An HVAC retrofit is often a good time to take advantage of these newer HVAC technologies. To determine which technologies are appropriate and cost-effective for the application, take a close look at the existing facility and how it is operated.

System Flexibility Options

Buildings today are in a constant state of churn. Interiors are rearranged. Old tenants move out and new ones move in. Infrastructure requirements increase. The result is that customers are constantly changing facilities to meet the needs of occupants or their own internal operations. One thing that doesn’t change easily in many existing buildings is the HVAC system.

This is why flexibility should be a key goal of HVAC system retrofits. HVAC systems should be able to adapt to those changes without requiring costly alterations. Otherwise, customers face a no-win situation: covering the cost of expensive changes to the HVAC system or living with an HVAC system that can’t keep up with changes in the building. Technology also moves on and there are better alternatives to consider.

Partial-load Performance

Chillers are the single largest users of electricity in practically all buildings. Not surprisingly, improving the efficiency of chillers has been a major goal for chiller manufacturers. As a result, today’s chillers are 25 to 50 percent more efficient at full load than those of 15 years ago. When selecting replacement chillers, much emphasis is paid to this full-load efficiency rating, however that’s only part of the picture.

Most chillers operate at full load for less than 10% their total run time. The other 90% of the time chillers are operating below full-load capabilities. As the load on chillers decreases, so does the efficiency of the units.

Because chillers operate under part-load conditions for such a high percentage of their run times, the annual energy cost of the chiller will be determined primarily by its part-load efficiency. Although it might cost more to purchase a unit with better part-load efficiency, this premium will be recovered many times over through energy savings during the life of the chiller.

Service & Maintenance

As HVAC systems age, maintenance requirements increase. Maintenance costs are too often ignored when system retrofits are being evaluated. In fact, as long as a system doesn’t stop working, it might not even be considered as a retrofit candidate. Just because a system is able to limp along doesn’t mean it’s operating efficiently or meeting the requirements of the application.

Look through maintenance records for the building. High maintenance costs and increasing maintenance requirements are an indication that those systems or components might be approaching the end of their service lives.

Customers should set priorities for HVAC retrofits based in part on maintenance requirements.

Another factor to consider is the availability of replacement components. When components for a particular system are no longer available from the manufacturer, or if the manufacturer should go out of business, it is only a matter of time before it will be necessary to replace that system. This has happened frequently with building automation systems. Before the development of interoperable systems, users were at the mercy of the system manufacturer. Many manufacturers failed or decided to get out of the building automation system business. Others upgraded their systems and discontinued support for older generation systems. Once the spare parts inventory was depleted, users had little choice but to retrofit their building automation systems.

Consider also the maintenance requirements of the systems and components that are being installed as part of the retrofit. Can they be maintained by in-house personnel, or will their maintenance have to be performed under contract? What tools and training will be required to properly operate and maintain the new system? What are the projected maintenance costs? Ignoring maintenance requirements for the retrofitted system will only guarantee having to retrofit the system before it would otherwise be necessary.

Looking into the Future

There is a tendency when planning for HVAC retrofits to focus on only a specific component or portion of the HVAC system. Chillers that are becoming unreliable or the air handler that no longer meets the needs of the conditioned space, might be serious problems that demand to be addressed. But before making retrofit decisions, customers should step back and determine if other projects planned for the building will affect HVAC system operation.

For example, upgrading the lighting system or installing more energy-efficient windows will reduce cooling loads. If those projects are planned in the near future, then a planned retrofit program for the building’s chiller should be scheduled after they have been completed. Reduced cooling loads will allow a smaller chiller, reducing both first and operating costs.

Building Occupancy

One of the goals of any HVAC retrofit program is to improve the level of service. While customers might understand the technical problems with the existing HVAC systems, they will not fully comprehend the needs of building occupants unless they get them involved in the retrofit process. After all, occupants are the ones that understand their environments the best. Customers will not know what system will best meet occupant needs – indeed, they might not even have a good understanding of what their HVAC needs are. Occupant input will give the customer a clearer understanding of what the HVAC system will be expected to achieve.

Building occupants are also good sources of information on the performance of existing systems. Frequently, they are aware of problems that go unreported to building staff. That information is often crucial in setting priorities for HVAC system retrofits.

There’s one other good reason to get occupants involved: HVAC system retrofits can be disruptive. They can require temporary relocation of building occupants. Heating or air conditioning service may be disrupted for days or weeks. A schedule of moves and outages will have to be developed. Without the cooperation of occupants, retrofits can turn into scheduling nightmares.

Funding Approval

HVAC retrofits must compete with other departments for funding. Too often, though, the team responsible simply submit funding requests with little or no supporting information. As a result, projects fail to win the funding needed to perform a complete retrofit. Instead, components are patched together just to keep the system running.

To increase the chances of receiving funding, customers must submit their budget requests in a format familiar to financial managers. Energy savings, maintenance savings, return on investment: These are among the terms that will help convince financial managers of the value of the project.

It’s also important to provide the right level of detail. For example, if reliability is an issue, it isn’t enough simply to report that fact; instead, the team responsible must show that it is a problem with key supporting information. How many times has service been interrupted? What was the cost of those interruptions to the maintenance department? What was the cost to building occupants? What level of performance can be expected from the retrofit system?

An HVAC retrofit is a major undertaking for any customer, building occupants or the organisation’s management. It is also an opportunity, because of the cost and disruption involved, the same opportunity might not come along again for decades.

9. Refrigerant Gases

As of January 1st 2015, R22 Refrigerant will be discontinued. Systems using R22 that require invasive servicing or repair must undergo complete refrigerant R22 removal and deep system cleansing before introducing the alternative refrigerant. An increasing number of equipment manufacturers will be offering flammable refrigerants. Are you ready?

How much money does a saving of 30% energy consumption represent to you?

Sanyo Air Conditioning Systems Spares & Technical Support

Panasonic & Sanyo Air Conditioning System Brands

Sanyo air conditioning were taken over by Panasonic air conditioning a few years ago, and have slowly phased out the Sanyo brand and are no longer supplying the Sanyo air conditioning branded range as Sanyo, but instead as Panasonic.

Any new spare parts for existing Sanyo systems come with the Panasonic logo / branding. Existing customer sites with existing Sanyo systems, where we have had to replace the whole indoor or outdoor unit due to faults, as they are sometimes compatible, can lead to having both Sanyo & Panasonic brand names on the same air conditioning split system, which can sometimes cause confusion. We usually install a label on the indoor or outdoor unit to clarify what has happened.

The good news for all customer with existing Sanyo equipment is that getting hold of Sanyo spare parts has not been an issue for Chillaire Limited. We can obtain spares through Panasonic or due to our knowledge of the air conditioning industry through our network of ex Sanyo suppliers. Chillaire Limited has a good relationship with the Panasonic technical department, who have ex-Sanyo staff with good Sanyo equipment knowledge to assist our engineers, even though our engineers have good knowledge on the Sanyo brand.

Chillaire Limited will continue to offer technical support and repair of Sanyo systems, for the foreseeable future. Our engineers have years of experience working on Sanyo split air conditioning and VRF systems. We will also continue to offer support for the Sanyo rooftop units, packaged units, chillers, close control air conditioning systems and their gas fired air conditioning systems.

Panasonic can offer a like for like replacement air conditioning systems for existing Sanyo air conditioning systems that may require upgrading or replacing, which they are able to do with relative ease and quickly. You also have the option to consider alternative brands, which Chillaire Limited can offer, such as  Hitachi / Daikin / Fujitsu / Mitsubishi / Samsung / LG matching existing Sanyo air conditioning system capacities, types of equipment and design.

If you have a Sanyo system that you are having problems with and you require assistance, feel free to contact us on 024 7632 0300024 7632 0300 or by email: service@chillaire.co.uk.

National regional numbers are available on our website: www.chillaire.co.uk

You can also call us on our National Freephone Number: 0800 092 98980800 092 9898 FREE

F – Gas in Air Conditioning

Record keeping and maintenance requirements for companies that operate or service equipment containing fluorinated greenhouse gas (F gas).

Many refrigeration, air conditioning & heatpump systems contain Hydrofluoracarbons (HFCs). HFCs are a type of fluorinated greenhouse gas(F gas).

Companies that operate or service and maintain equipment containing F Gas must meet these requirements.

Check if your system contains F gas

Look at the list of F gases regulated by the EU.

To find out if your equipment contains one of these F gases you can:

  • check your manual or the labels on your equipment
  • speak to the company that installed your equipment

HFC 404A and HFC 134a are common in refrigeration systems.

HFC 23 and HFC 227ea are common in fire protection systems.

HFC 404A and HFC 410A are common in air conditioning and heat pump systems.

Use trained technicians

Only trained technicians can carry out work on equipment containing F gases, including:

  • installation
  • testing for leaks
  • general maintenance
  • disposal or decommissioning when you no longer need the product

For refrigeration systems in vehicles, (eg cars, trains and ships) this only applies to:

  • refrigerated trucks that weigh more than 3.5 tonnes
  • refrigerated trailers that are designed to be towed by a truck or tractor

Check that anyone working on your equipment is qualified.

Read more about the specific qualifications needed to work on equipment containing F gases.

Label equipment

You must add a label if you add F gas to refrigeration, fire protection or air conditioning equipment when you’re installing it. The label must state:

  • that the equipment contains an F gas
  • the industry name for the F gas, or the chemical name if there isn’t an accepted industry name

From 2017 the label must also state the:

  • mass of F gas in the equipment (in kg)
  • carbon dioxide (CO2) equivalent mass of F gas in the equipment (in tonnes)
  • the global warming potential of the F gas

Find the global warming potential of each F gas on the list of F gases regulated by the EU.

Find out how to use an F gas’ global warming potential to calculate the weight of the F gas in CO2 equivalent.

‘Hermetically sealed’ equipment

If F gas is ‘hermetically sealed’ within a product, the label must also state that’s the case. F gas is hermetically sealed if both of the following apply:

  • any part of the product that contains F gas is welded or brazed shut, or permanently sealed in another way
  • the product has a tested leakage rate of less than 3 grams per year

A system that meets these 2 conditions is considered hermetically sealed, even if it has capped valves or capped service ports to allow access for repairs and maintenance.

Check for leaks

You’re responsible for stopping leaks from your equipment.

Contractors that install, maintain or dispose of equipment share responsibility for trying to stop leaks with the operators of equipment.

You must check all equipment for leaks.

For equipment that contains F gas above certain thresholds, you must check for leaks at specific intervals.

Thresholds at which leaks check intervals are specified

The thresholds at which leak check intervals are specified are expressed in terms of CO2 equivalent.

They take into account both the quantity of F gas in the equipment and the ‘global warming potential’ of the F gas (how much the F gas contributes to global warming).

This table sets out the:

  • F gas thresholds, in tonnes CO2 equivalent, at which leak leak check intervals are specified
  • maximum allowed interval between leaks checks for equipment that meets each threshold
  • quantities of commonly used HFCs equal to each threshold
Maximum interval between leak checks CO2 (tonnes) HFC

23 (kg)

HFC

227ea (kg)

HFC

404A (kg)

HFC

410a (kg)

HFC

134a (kg)

1 year 5 0.3 1.6 1.3 2.4 3.5
6 months 50 3.4 15.5 13 24 35
3 months 500 34 155 127 240 350

You can find out global warming potentials of other F gases in the list of F gases regulated by the EU, and use global warming potentials to calculate the CO2 equivalent of an F gas.

Equipment that didn’t require leak checks under the 2006 regulation may do so now, if it contains an F gas with a high global warming potential, like HFC 404A.

Special cases and exemptions

If you install a system to automatically detect leaks, the maximum interval between leak checks is doubled. For example you only need to leak check a product that contains F gas equivalent to 5 tonnes CO2 once every 2 years, if you fit a leak detection system.

There’s no maximum interval for leak checks on hermetically sealed refrigeration and air conditioning systems unless they contain F gas equivalent to 10 tonnes CO2. That’s equal to 2.6 kg of HFC404A or 7 kg of HFC 134a.

The maximum intervals don’t apply until 2017 for equipment that contains less than 3 kg of F gas.

If you find a leak

If a leak is found during a check, you must repair it and repeat the test within a month to check the repair worked.

Install leak detection equipment

You must fit a leak detection system if your equipment contains F gas equivalent to more than 500 tonnes of CO2.

For gases commonly used in refrigeration, air conditioning or fire protection, this table sets out the mass of gas equivalent to 500 tonnes of CO2.

F gas Mass of gas equal to 500 tonnes of CO2
HFC 23 34
HFC 508 38
HFC 507 125
HFC 404A 127
HFC 434A 154
HFC 422D 183
HFC 438A 221
HFC 410A 239
HFC 407C 282
HFC 134a 350

The leak detection system must alert you, or a service company responsible for your equipment, if a leak is detected.

You must test the leak detection system checked annually to make sure it’s working properly.

A system that didn’t need leak detection equipment under the 2006 regulation may do so now, if it contains an F gas with a high global warming potential, like HFC 404A

F gases that can’t be used to refill equipment from 2020

From 2020 you won’t be able to use some ‘virgin’ (unused) F gases to refill existing refrigeration systems.

The ‘service ban’ will apply when both these conditions are met:

  • the refrigeration system contains F gas equivalent to 40 tonnes of CO2 or more
  • the virgin F gas has a global warming potential of more than 2,500

The service ban won’t apply to fire protection systems or air conditioning and heat pump systems.

Options when the ban applies

If you need to add refrigerant to systems affected by the ban after 2020 you’ll need to do one of the following:

  • use an F gas with a global warming potential of more than 2,500 that has been reclaimed (up to 2030 only)
  • use an F gas with a global warming potential of more than 2,500 that has been recycled either from your own equipment, or by the company servicing your equipment
  • remove all of the F gas from the system and replace it with an F gas that has a global warming potential lower than 2,500, eg HFC 407A of HFC 407F (this is known as ‘retrofilling’)
  • replace the refrigeration system with new equipment that uses a refrigerant with a lower global warming potential

Less of your equipment will be affected by the ban if you buy equipment that uses refrigerants with low global warming potentials.

Keep records

The operator of equipment, and the company that services it, must keep the following records about any equipment that has to be checked for leaks (ie any equipment that contains F gas equivalent to more than 5 tonnes of CO2):

  • quantity and type of gas in the equipment when it’s installed
  • quantity and type of gas added during any maintenance (eg leak repairs)
  • details (name, address and certificate number if relevant) of any companies that install, service or decommission the equipment
  • dates and results of all mandatory leak checks
  • measures taken to recover and dispose of gases when you dispose of the equipment (eg disposing of it through a registered waste carrier)

You must also record if the gas used in the equipment has been recycled or reclaimed and if so the:

  • details of the recycling or reclamation facility (name, address and certificate number if it has one)
  • quantity of any gases recovered

You must keep records for 5 years & make them available to any authority if requested.

The following requirements weren’t in the previous regulation:

  • recording measures taken to recover and dispose of gases
  • recording if the gas is recycled or reclaimed & the facility that recycled or reclaimed it

Recover F gases when disposing of equipment

You must use a qualified technician to recover F gas when disposing of equipment. Find out how to recover F gas.

Ban on new equipment

The EU is banning the use of some F gases in refrigeration, fire protection, and air conditioning and heat pump systems.

Find out more about bans on equipment containing F gases.

HFC phase down

The EU is cutting the availability of HFCs by 79% between 2015 and 2030.

Only companies with EU quotas will be able to supply HFCs to the EU market.

Equipment containing HFCs, particularly those with high global warming potentials, is likely to become more expensive to buy and maintain.

The HFCs that are part of the phase down are listed with their global warming potentials in section 1 of the list of F gases regulated by the EU.

The GEA Denco GAC and GAH range are now available with inverter compressors.

It is precisely in partial-load ranges of operation that the new GEA chillers / heat pumps with DC inverter scroll compressors are extremely energy efficient. They achieve an ESEER value of 4.8.

On the occasion of ISH 2013 (in Frankfurt am Main, Germany, from March 12 to 16, 2013, in Hall 11.0, Stand B91), GEA will present further-developed systems in the GEA GAC and GAH range. These air-cooled GAC chillers and GAH heat pumps are now equipped with inverter compressors. As improvement over their predecessor ranges, these new developments – thanks to their one or two integrated DC inverter scroll compressors – are highly energy-efficient, especially in their relevant partial-load operational ranges. In their rating classes, they achieve exceptional ESEER values, up to 4.8, and thereby reduce operational costs, amortization times, and CO2 emissions. Additional benefits of this new inverter compressor technology include more exact temperature control, continuously variable regulation of compressor speed, and – as a result – longer service life. By virtue of the inverters, the soft-start function is already integrated and does not require selection as an option. Thanks to their inverters, both system variants – the GAC chillers and the GAH heat pumps – require no or only small buffer tanks. In heat pump operations, air-intake temperatures down to -15 °C are possible.

Since the hydraulic connection of these new inverter-controlled systems is the same as that in the predecessor range, design of the water cycle can take place as usual. These new compact units are available as chillers and heat pumps, each in seven capacity ratings from 16 to 75 kW of cooling/heating duty, with or without an integrated pump. In their standard models, they can be installed either outdoors or indoors via duct connection.

New Energy Efficiency Ratings

Nominal versus seasonal efficiency

Previously up until 2013, the air conditioning industry used a ‘nominal’ ratio for cooling “Energy Efficiency Ratio” (EER) and heating “Coefficient of Performance” (COP), however this resulted in a significant gap between predicted performance and what is actually achieved by the air conditioning / heat pump systems.

Nominal efficiency gives an indication of how efficient an air conditioner is when operating at full load in nominal conditions (not often achieved).

To rectify this, a more accurate method – the “Seasonal Efficiency’ Ratio” (SEER) – has now been developed, which provide a better measure of the real-life energy efficiency of air conditioning / heat pump systems.

Seasonal efficiency gives an indication of how efficient an air conditioner is when operating over an entire cooling or heating season (giving a more realistic efficiency measure).

Seasonal Energy Efficiency Ratio (SEER) & Seasonal Coefficient of Performance (SCOP)

The new seasonal energy efficiency ratio (SEER) & seasonal coefficient of performance (SCOP) take into account a number of factors, which together provide a much more realistic view of energy efficiency in real life conditions, including:

  • Energy performance in different climate zones
  • Efficiency at partial load capacity as well as full load
  • Energy consumption in auxiliary and stand by modes
  • Different load requirements through the seasons

Chillaire Limited offer a wide range of energy efficiency systems manufactured by leading brand names such as Daikin, Mitsubishi, Hitachi, Panasonic and many more. We select the right brand & model for the right application, giving the customer maximum capacity with maximum energy savings.

Chillaire
Air Conditioning - Heating - Ventilation